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CHAPTER 1
INTRODUCTION

1.1 Liquid Jet Instability

fhe first theoretical study of the capillary (or surface tension)
instability of a jet of liquid was carried out by Rayleigh.(1878). He
analyzed the Tinear stability of an inviscid, 1ncompress1b1e, infinitely
long cylindrical jet (with plug flow vg]ocity prof1ie) to a spatially
harmonic disturbance of the jet surface. Only axiéymmetrﬁc modes were
found to be unstable and the‘wavelength of the most unstéb]e‘(tempora]]y
growing) mode was determined to be 4.51 . . . times the ﬁnd1sturbed jet

diameter. .The cutoff wavelength.for unstab1e‘disturbances, bé1ow which
the disturbance will decay in f1me, was found.to be equal to the undis-
turbed jet circumference. |

Later, Rayleigh (1892) 1nc1udéd the effects of viscosity on the jet
stability. He found that 1ncréa51ng the viscosity had the effect of
increasing the wavelength of the most unstable mode. Since these stud-
ies, numerous investigators héve studied the jet breakup process.

Most of the analyses treated the.tempofa] instability problem. Lee
(1974) used a one-dimensional, inviscid model fo study the jet breakup
process. P}oceed1ng on the assumption that the axial velocity depends
only bn the axial coordinate he‘arr1ved.at a s1mp11f1ed'sef Qf equations -
for momentum and mass conservation. The lipearized équét1ons fhus
obtained were solved in closed form while numerical éolutions were
obtained for the nonlinear analysis. Among the results obté1ned were the
time for the jet to breakup (in both the 1inear and nonlinear cases) and
the volume ratio of the satellite drops to the total drops (in the non-
linear analysis). In the range of parameters studied satellite drops

were always found to occur.



While the temporal theory has received the mosf attention the actual
jet breakup usually takes place as a result of spatially growing distur-
bances. This was recognized by Keller, Rubinow and Tu (1973) who, after
making a transformation to a moving jet, solved the dispersion relation
obtained by Rayleigh with real frequency while allowing the wavenumber
to be complex. In this way spatially growing waves are obtained.

It was found by Keller et al. that the growth rates for the temporal
and spatial instabilities are the same only in the infinite Weber number
Timit. Hence the results from the temporal theory can be abp]ied as an
approximation to a rea]Ijet only for large Weber numbefs.

Pimbley (1976), used the one-dimensional model of Lee to treat a
’boundary value problem where the unstable disturbances grow with distance
from the jet exit. He found that Lee's solution (after a transformation -
appropriate to a moving jet) was the infinite Weber number 1imit of the
solution to his boundary value problem.

'Exper1menta1.work has necessarily been concerned with spatially
growing disturbances and the jet is seen to break into drops at some
distance from the nozzle rather than after some period of time. The
results obta1ned for the growth rates and jet breakup Tengths have gener-
ally been converted for comparison with Ray1e1gh'§ (temporal) theory
using the jet velocity.

Crane, Birch, and McCormack (1964) were able to obtain uniformly
spaced and sized drops over a range of disturbance wavejengths which
corresponded to the range predictéd by Rayleigh's linear theory. The
growth rates of disturbances of different wavelengths were determined and
found to depart appreciably from the theoretical predictions of Rayleigh.
The finite amplitude of the induced disturbances and consequent nonlinear
effects were the reasons given for the differences. In support of this

2



a plot was given which shows that the growth ratés in the experiment
breaks awayrfrom the T1near curve a‘short distance from the nozzle exit.

Donnelly and Glaberson (1966) performed experiments on 1iquid jets
of water and glycerine-water solutions in air. Disturbances were induced
on the jet by a nearby loudspeaker. Very clear stoboscopic flash photo-
graphs were taken of the jet breakup process showing the formation of the
. droplets. From these pictures the d1spers1on curve for the disturbances
was determined. The spat1a1vgr0wth of the disturbances, as shown by the
photog}aphs, was converted to a temporal growth using the frequency of
the forcing and the wavelength of the 1nduced.d1sturbance for comparison
with Chandrasekhar's (1961) linear analysis (which was . based on Ray-
leigh's ana]ys1§).» The results were found to compare quite favorably.

In light of the studies mentibned»above this can probably be traced to
the large value of the jet velocity compared with the capillary velocity
(i.e., large Weber number) and the fact that a linear growth rate was
found to persist to within one wavelength of the point at wh1§h drops
begin to break off. :

Using the gliycerine-water solution the effect of viscosity on the
stability of the jet was examined. It was found that increasing the
v%scosity had the effect of decreasing the growth rate, all other things
being equal. These results agreed with Chandrasekhar's to within 20
percent. Small variations.in the temperature of the jet, causing the
viscosity to vary, was cited as one reason for the discrepancy.

A detailed review of the work done on Tiquﬁd jet instability and a
discussion o% its applications to nozz]e design haé been made by McCarthy
and Molloy (1974). Bogy (1979) has given an éccount of‘some more recent
work concerning nonlinear effects on the jet breakup; in particular the

formation of satellite drops.



1.2 Technological Applications |

A number of technologies have evolved which make use of (and helped
to motivate) the scientific studies touched on in the previous section.
Perhaps the best known of these is the ink jet printer.

In such a printer the drops which are formed due to the jet insta-
bi1ity are given a charge at the point where they break off from the jet.
The charged drops pass through an electric field which causes them to be
deflected from their original paths. The deflected drobs then strike the
paper ahd form characters. Details of the workings of such a system have
been given by Kuhn and Meyers (1979).

It is easy to see that for such a system to perform properly thé jet
breakup and drop formation must be carefully controlled. »A particular
problem is the appearance of the small satellite drops which are cbserved
to occur between the main drops. For this reason a significant effort
has been made to understand this (nonlinear) phenomenon.

A more recent idea for exploiting the jet breakup process is in its
use as a heat transfer device, the.50~ca11ed 1iquid droplet radiator.
Here a heated jet of fluid is shot out of a nozzle into é collector a
certain d1§tance downstream. As the jet tréve1s between the nozzle and
the collector (and breaks into drops) it radiates energy into the space
around it. The fluid is then caught in the co]léctor and circulated back
through the system. The aim is to develop this type of system for use
in space on satellites or spacecraft.

Some advantages to its use in spate over more conventional systems
are the large surface area to vo]ume ratio of the drops, the relative
ease of transporting into space a container of fluid over a network of
pipes and its greater chances of surviving the impact of small ﬁart1c1es

floating through space.
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A study of the feasibility of the liquid dropiet fadiator was made.
by Mattick and Hertzberg (1982). While their results showed promise,
more work is needed before a practical system can be made.

We have cited two examples where the liquid capillary jet breakup
process cén be put to use. These examples i1lustrate the 1mportahce of
understanding and being able to control the jet breakup.

7.3 Receptivity

It has been_found in a number of prob]emsiin which a flow 1s.subject
to incident disturbances»(Jones dnd Morgan (1972), Crighton and Lepp1ng—
ton (1974), and Goidstein (1981)) thaf eigensoiutions which gfow_exponen~
tially downstream must be added to a particular solution in order to
satisfy either edge requirements or céusa]ity (or both); The causality
condition requires that the flow not respond to a disturbance before that
disturbance is imposed. The edge condition which is usually specified
is the Kutta condition that the velocity and pressure be finite at any
edges or other singular points. The appropriateness of'fhe Kutta condi-
tion has been examined by 1nc1ud1ng'v15cous effects near a singular
‘point. A review of work concerned with the Kutta condition has been
given by Crighton (1985).

.In one such study, Rienstra (1981) using some results from triple
deck theory obtained by Brown and .Daniels (1975), showed for a semi-
infinite vortex sheet with a plane harmonic wave incident on 1t, that the
solution satisfying the Kutta condition 1s’obta1ned as the leading order
term in the asyhptot1c expansion of the outer solution for the corre-
sponding v1stous problem. Hence the imposition of the Kutta condition
in the 1n§1sc1d solution is consistent with the detailed structure of

the viscous flow near the edge.



The eigensolutions which are introduced into the solutions in tﬁ1s
way bonta1n terms which involve instability waves. The Kuttq condition
then providés a mechanism by which the external disturbances can couple
to instability waves. A similar coupling occurs when causality is
imposed. Since specific constant multiples of.the eigensolution are
needed to satisfy each of these conditions the amplitude qf the insta-
bi1ity waves is thereby specified. |

The triggering of fhstabi]ﬁty waves byvexternaT disturbances is the
so-called recépt1v1ty pféb]eh (Morkovin (1969)). The a}m of the. study
of receptivity is to determine the effectivenes$ ofvpart1cu1ar distur-
bances in exciting instability waves in a f]bw. Oﬁe measure of this
efficiency is the amplitude of the instability wave produced by the dis-
turbance per unit amplitude of the fbrcing.' This quantity s known as
the coupling coeff1c1eht. Since the Kutta condition determines the
amplitude of the 1nstab111fy wave we_Say that the Kutta conditiqn com-
pletely specifjes the receptivity problem. Similarly the causality con-
dition can also be used to spec1fybthe receptivity problem. 1In some
problems these cbnd1tﬁons lead to the samelresu1t (Crighton and Lepping-
ton (1974)) while in others they do not (Goldstein (1981)). We will be
addressing this question for the pfob]em studied here.

1.4 Scope of the Present Work:

The process of the breakup of a liquid jet begins at the nozzle exit
where spatially grow1ng'cap111ary instabilities are excited by thé
external disturbance environment. The disturbances may be those which
are coincidentally present in a facility or thqse due.to a known forcing
which is intentionally imposed on .the jet. FS1ﬁce only the axisymmetric
mode is unstable the jét deformatfon’is varicose in nature (Rayleigh
(1878)). At the point downstream of the exif where the amp11tude of the
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1nstab111ty'waves become equal to the or191né1 radius of the jet a drop
of 1iquid is pinched off from the jet. Beyond this point the flow con-
sists of a series of sdch drops possibly with a set of smaller drops
(called satellite drops) occurfng between the main drops. A simple
schematic of this process is given in ffgure 1.1.

In applications such as those discussed in figure 1.2 it is neces-
sary to be able to control the drop formatibn.A In some case§ for example
it may be desired to produce drops of uniform size or to ellimate satel- |
1ite drops. Control over the breakup process can be accomplished by
imposing an appropriate exférha1 disturbance on the flow. Since the jet
breakup process begins with insfab111ty»waves the need to understand how
an external disturbance effects the drop formation leads one to a con-
sideration of the receptivity problem for a liquid jet.

In the present work we consider the inviscid, incompressible,
parallel flow of a Tiquid jet emerg{ng into a vacuum from a circular
cylindrical nozzle subjected to a small, time harmonic disturbance.
Specifically, this disturbance will take the form of a pu}sat1ng axial
pressure gradient. Linearized equationﬁ‘fof fhe fluctuations produced
by this perturbation are so]vgdnsubject to the kinematic and dynamic
boundary conditions on the duct walls and free surface-of the jet.

We will require that this "steady-state" (time—hafmonic) solution
be causal. That is, that it caﬁ'develop as the long time response of the
flow to a forcing started.instanfaneously at some initial time. Our goal
is to determine When spatially growing instability waves can be excited
by the external disturbance.

It will be seen that there are an infinite number of solutions to
the problem outlined above. Thesé solutions will differ in their
behavior near the trailing edge of the ducf. Out of these we will
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choose the least singular one since this is the one which can be expected
to match to an "inner" solution which takes.v1scos1ty into account (Vén
Dyke (1964)).

We begin in Chapter 2 with the general formulation of the problem.
Physical variables are defined and the flow geometry 11lustrated. He
then obtain the linearized differential equations aﬁd boundary conditions
for the fluctuating variables. '- |

In Chapter 3 we construct.a causal solution tovthe forced problem
using a method given by Br1ggs‘(1964); A brief description of the method
is given in the appendix.

Under certain conditions the causal éo]ut1on will invoive a term
wh1éh grows exponeﬁtﬁa11y danstream. This term represents a Rayleigh
instability wave. A major purposé for‘th1s study is to determine the
amplitude of the 1nstab111ty wave relative to the amplitude of the forc-
ing. This is the so-called “coup]ing coefficient". |

At the end of Chapter 3*we.wr1te down a noncausal parti;u1ar solu-
tion to the same equat1on§ and boundary conditions. We will find that
this solution is singular at the trailing edge of the duct.

In ﬁhapter 4 we construct an eigensolution to the problem and use
it to eliminate the singularity in the noncausal particular solution so
that fhe resulting solution satisfies the Kutta cond1t10n;: This solution
again involves 1nstab11ity_waves and we can cdmpute the coup11ng
coefficient. The solution obtained in thig way is compared with the
causal solution. | |

Finally, in Chapter 5 we discuss the various solutions and summarize

the results obtained.



CHAPTER 2
FORMULATION OF THE PROBLEM

2.1 Formulation

We consider the inviscid, incompressible, parallel flow of a Tiquid
jet emerging from a semi-infinite circular duct of radius a 1into an
evacuated region. The flow geometry and coordinate systgm used is sthn
in fiqure 2.1. "

A steady base flow (which sat1sf1e§ the inviscid equations of motion

for any choice of U(r)

U= (u(r), 0)

(2.1)

P = C'= constant

is subjected to a small, time harmonic, axisymmetric perturbation.
Assuming the equations can be linearized the fluctuations due to

this disturbénce will likewise be harmonic in time and we write them as

(u',v',p') = om0t (u'(x,7), V'(X,r), p'(x,r)) (2.2)
where o 1is the frequenéy of the disturbance. |

We write the instantaneous variables as

woawo (2.3)
’pT=p' +C
The instantaneous flow variables are governed by Eu]ér's equation
for an inviscid fluid
EXTREE
plat + (u -9 ul)= -vpT (2.4)

A

and the 1ncombress1b1e continuity equation

voeul =0 (2.5)

The kinematic boundary condition on the solid duct wall is
9



vT(x,a,t) = 0; -= < x < 0  (2.8)
0<t<ow

The perturbed free surface of the jet can be described by an
equation of the form | |
F=g(x,t) *a 2.
where ¢ 1is the displacement of the surface from its undisturbed
position.
On the free surface we have the k1nema}1c boundary Condﬁt1dn tﬁat

particles on the surface move with the surface. That is,

v o

D
VI(x,¢ + a,t) = Dt (2.8)
where D/Dt 1s the convective derivative
D _ 3 T 3 o
Dt ‘,at +u (¢ + a) ax : (2.9)

In the absence of viscosity the dynamic condition at the free
surface requires fhat surface tension forces balance pressure forces.

This condition can be written’as

PT(x,C + a,t) = Y<"l ' —l> | (2.10)
R R
1 2
where Yy 1is the surface tension and R] and R2 are the principal
radii of curvature of the surface at position. x and time +t (Landau
and Lipshitz (1959) p. 231). _
Substituting equation (2.3) into equations (2.4) to (2.6) and

linearizing for small disturbances we get

au' au' |, aur) ] ep'
P [at U o t ar V] T ax (2.11)
av' av! ap'
p['aT‘i-U(l') F]“EE‘ | (22)
Veu =0 (2.13)

vi(x,a,t) =0 —o < X <0 (2.14)

10



Since we have assumed that the disturbances are small, the displace-
ment of the surface from its original position will be small. We can
then expand the boundary conditions for x > 0 about r = a for 4

<< 1. This gives

vix,a,t) = %4y & 0<x<w (2.15)

for the kinematic condition and
2 :
p'(x,a,t) = - ¥ <§—é + ag) 0< x<w (2.16)
. _ a X

for the dynamic condition when the disturbances are axisymmetric (Lamb
(1945) p. 473). Note that in equation (2.16) we have set C = vy/a which
is the équ11ibr1um condition when thére is no surface displacement.

we‘wish to determine the solution to thé ébove problem for the par-
ticular case of a disturbance correéponding to a time harmonic axial
pressure gradient -P;e‘imt where P; "is a constant. |

Boundary value problems with discont1ndous bodhdary conditions such
as we have here can be solved by thé Wiener-Hopf method.(Nob1e (1958),
Roos (1969)). This method makes use of the analytic copt1nuatjon of
unilateral Fourier transforms 1n{§ the complex plane. We make use.of

this method in the present work.
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CHAPTER 3
FORCED JET SOLUTION
3.1 Introduction
Since the'present formulation is linear we may obtain the solution
to the forced jet problem by superposition.
In particular, we first qonsider the flow in a doubly infinite

1
circular duct subject to an axial pressure gradient —Poe_1mt where

Po js a constant. The solution to the doubly infinite duct problem
will satisfy the differential equations (2.11) to (2.15), the boundary
condition on the solid duct wall (eq. (2.14)) and the condition that at
upstream infinity there is only‘a time harmon1c pulsation of the flow due
to the imposed pressure gradient. - The two free surfacé conditions
.b_ (eqs. (2.155 and (2.16)) howéver_cannot be sétisfied by this solution.
For th1§ reason we construct another solution to equatiohs (2.11) to
(2.13) which corrects the doubly infinite duct solution for the presence
of the free surface and which vanishes as x - - so that the upstream
boundary condition remains satisfied.

In this way then the solution to the forced semi-infinite jet brob-
lem is obtained.
3.2 Doubly Infinite Circular Duct

We impose a time harmonic axial pressure gradient aPD/ax =
—P(|,,e_4i("t on the flow in a doubly infinite circular duct and seek

solutions of the form

F(Ax-wt)

gD(x,r.t) = QD(r) e (3.7)

Ssince PD is a function of x and t only equation (2.12) gives
that vD(r) = 0. 1In particular the kinematic boundary condition on the

solid duct walls is identically satisfied. In order to'satiéfy
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equation (2.11) we set A =0 'and uD(r) = 1P6/pw a constant. Hence

the solution to this problem becomes

D voo~let -fwt

P (x,t) = —Poxe + Poe .

b _

v (x,t) =0 (3.2)
P,

WO(x,t) = —2 g 1ot
pw

for all x where P0 is the level of the pressure fluctuation at
x = 0 which will be determined as pért of the solution.

From equation (3.2) we can see that the boundary ;ond1t10ns of equa-
tions (2.15) and (2.16) are not satisfied by this solution. 'We next
construct a solution to equations (2.11) to (2.13) which will correct
equation (3.2) at the free surface of the jet.

3.3 Semi-infinite Jet

In order to correct equations (3.2) for the presence of the free
surface we will seek}funct1ons E(x,r,t); Z(x,t) and E(x;r,f), which
satisfy equations (2.11) to (2.14), such that u’ + 3 and p° +p
satisfy the satisfy the boundary conditﬁoﬁs for x > 0 (eqs. (2.15)
and (2.16)).

Using equation (3.2) in equations (2.57) and (2.16) we write

~ ) 9 ~ '
v(x,a,t) = <5¥-+ u(a) 5;) c(x,t) , (3.3)
and
~ | fot o —let 12 8 \-
p(x,a,t) = P'xe ' - pe Yy <-—'+ 4‘“) Z(x,t) (3.4)
0 o] 2
a ax
for x > 0.

Then the boundary value problem which determines the desired

functions 1is

13



Q_E. QE-I"'.QE_
p[at + U(r) ax + U'(r) v] ; (3.5)

9X
v av|_ _a
P[at + U(r) ax]‘ " ar (3.6)
Veu=0 (3.7)
v(x,a,t) =0 ~0 < X <0 (3.8)
Wx,r,t)—> 0 as x—o - w (3.8)

together with equations (3.3) énd (3.4). A boundary value probiem'such
as that above with discontinuous boundary cond1t10ns can be solved by
Fourier transforms using the method of Wiener and Hopf.

Sﬁnce for incompressible flow thelabso1ute 1eve1 of the pressure.
fluctuations does not‘van1sh at infinity but 1s felt for all x -o < x
< » we have subtracted it out from the pressure above so that the
Fourier transform of p w115 exist in the usual sense. |

We will seek solutions of the form

(3,9,5,0) = (u(x,r), v(x,r), p(x,r), ¢(x)) e et (3.9)

where the functions wu, v, p, and ¢ are sufficiently well behaved at
infinity so that their Fourier transforms in x exist. These are

defined as

a(k,r) = %—'.[ u(x,‘r)e'1kx dx (3.10)

11'
(o4
etc.
The Wiener-Hopf technique makes use of the analytic continuation of

half range Fourier transforms into the complex plane. These unilateral

transforms are defined as

- 1 0 -1kx
u+(k,r) = 5 .[m u(x,r)e dx (3.11)

14



and

u_(k,r) = —_lL u(x,rye” KX g (3.12)

The integral in equation (3.11) can be shown to converge uniformly in any
closed and bounded subset of the upper half plane (Im k > 0) and hence
represents an analytic function in the upper half plane (Roos (1969)).
Likewise, equation (3.12) represents a function which is analytic in the

lower half plane. Along the real axisiwe have

;(k,r) = ;+(k,r) + ;_(k,r) (3.13)

Similar relations can be written down for the other variables.
With the above definitions we Fourier transform equations (3.5)

to (3.7) and obtain

pi(U(r)k - w)a(k,r) + pU‘(r);(k,r) = -1k;(k,r) (3.14)
- dégk,r)
PHU(PIk - @)v(k,r) = - (3.15)
A vik,r)  dv(k,r)
iku(k,r) + r * o odr =0 (3.16)

Applying the half range transforms to the bbundary conditions (egs.

(3.3), (3.4), and (3.8)) and noting that ¢(0,t) = 0 we can write

Q+(k,a) =0 (3.17)
v (k,a) = 1(U(a)k - W) _ (3.18)
- p; Po 2 1\ : xz'(0)
p (k,a) = s — o — e[k - ) () ¢ B (3.19)
2«(k - de%) 2mi(k - 1e*) a - v
Te*x

In equation (3.19) we have added a small amount of damping e

for x > o to the forcing terms so that the Fourier transform will
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exist. The damping factor e* will be set equal to zero at the end
of the analysis.
Equations (3.14) to (3.16) can be combined to arrive at Rayleigh's

equation for Vv which becomes

~ |

<U(r) - %’)[(Q'(k,r) R ﬂ@) - sz(k,r)] _‘r(m> v(k,r) = 0

r
o (3.20)
for an arbitrary base flow profile U(r). In equation (3.20) !
means differentiation with respect to r.
In the following we will take
2
U(r) =U (1 - b 1—); 0 <b< (3.21)
0 a2

where Uo is a constant. Using the parameter b we can get results
for a range of profiles from plug f1ow to Hagen-Poiseuiile flow.
Note that for this family of profiles
ld__[!'_(ﬂ]
r dr

— | =0 | -~ (3.22)

With equations (3.21) and (3.22), equation (3.20) becomes

vi(k,r) + T v k,r) - <k2'+ l§> Vo) =0 (3.23)
r

Equation (3.23) is the modified Bessel equation of order one.

Hence we can write

Wk, r) = AGK) Ty(kr) + B(K) Kq(kr) (3.24)

where I] and K] are the modified Bessel functions of the first
and second kind, respectively.
In-order for the solution to be bounded at r = 0 we must have

B(k) = 0 so that

v(k,r) = ACK) I,(kr) (3.25)
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The function A(k) is determinéd from the boundary conditions by
the Wiener-Hopf technique.

From equations (3.13), (3.17), and (3.25) we can write

V(k,a) = AK)T, (ka) = v_(k,a) (3.26)

and

Vi(k,a) = ACKIKId(ka) = vi(k,a) + V!(k,a) (3.27)

]
for k along the real axis. (In eq. (3.27) 11(ka) = d/d(ka)
11(ka)).
Eliminating A(k) from equations (3.26) and (3.27) gives

- I](ka) - - :
v (k,a) = ET{(EEY [v+(k,a) + v_(k,aﬁ . (3.28)

The boundary conditions (eqs. (3.18) and (3.19)) can be used to

~

eliminate ¢ to get

2 1
. -p! P 1Y<k "'E) . ‘(0
0 0 a yZ'(0)
p (k,a) = + el v (k,a) +
- 20(k - 15*)2 2ri(k - ie*) [w - kU(a)] 2w
(3.29)
Writing equation (3.14) at r = a using equation (3.29) and

the fact that p(k,a) = p+(k,a) + p_(k,a) alon§ the real axis gives

. . ) b
ip[U(a)k - w] u(k,a) + pU'(a) v(k,a) = -1k [P (k,a) - ______Q____§
- 2wk - fe¥)
Y
0 a ~ (0
* 2tk - 1e9) " [e - ku(ay] v (ko) t (3.30)

_ 2w

Writing equation (3.16) at r = a and using equations (3.26) and

(3.28) we get

k1! (Ka)
! ——1————] (3.31)

ik u(k,a) = -v_(k,a) [5 T

117



Substituting equations (3.26) and (3.31) into equation (3.30) and.
rearranging gives
P! Ko(k - 1e%)P,

~ 2 -~
x(K) (K - 1e%)2 v (k,a) + ek - 1et) p,(k,a) = 5~ 2 - 2w

kP - 10 % (0)
2w

.(3.32)

1 ’ in(ka)

x(k) = m {p[mb- kU(a);']2 [5 + m:l + pU'(a)klew - kU(a)]

N Yk2<l§ ) k2>} (3.33)
a

The key to the success of the Wiener-Hopf technique 1ies in find-

ing a factorization for x(k) such that

)
x(k) = X (K) (3.34)
where 'x, 1is analytic for Imk >0 and x_ 1is analytic for
Im k < 0.
Formally the Wiener-Hopf equation can be written as
(k - 1e*)2 v_(k,a) 1k2(k - Tef)zP;(k,a)
x_(K) ' X, (k)
k2Pt K2k - 1em)P iyki(k - 1em) ] L
- {—2o _ o _ ! (3.36)
- 2w 2w 2w x+(k) ’

Due to the nature of thé'kerna] funct1oh Cx(k), speb1f1ca11y that
it is meromorphic, the factorization (eq. (3;34))Vcan be performed in a
simple way by making use of the Weierstrass féctorizat1on theorem (Roos
(1969)). As mentioned in the introduction, the solﬁtﬁon we are seeking

is the least singular causal solution. In view of this we will construct
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our factorizations so as to be consistent with the requirements of
causality.

3.4 Factorization of the Kernal Function and Inhomogeneous Tefms
3.4.1 Causality

A general method for obtaining a causal response of a system to an
impulsively started forcing has been given by Briggs (1964). Our concern
here is that our "steady state" (time harmonic) solution be the long-time
response of the flow which develops 16 a causal way from a forcing which
was initiated at some time, say t = 0. The causality condition is that
there is no response before the forcing is "turned on", that is for t < 0.

So as not to disrupt the discussion of the analysis a description
of the main points of Briggs' method is deferred to an appendix. At this
time we merely point out that a causal solution can be obtained by solv-
ing the problem with the frequency o having a large positive imagi-
nary part. The (causal) solution for real « 1is then obtained by
analytic continuation.

The requirement that Im o be 1afge has no effect on the algebra
leading to equation (3.32). The factorization of the kernal function,
however, is effected in a very important way. We now proceed to deter-
mine this factorization.

3.4.2 The Weierstrass Factorization Formula
The Welerstrass factorization formula allows us to write an entire

function with simple zeros as an infinite product (Roos (1969) p. 174)

3 _ Zdsdz0eglE(D) )Y, 0T 2/a |
E(7) = (o) e z=0 < - -§—>e n (3.37)

n=1 n

where the a, are the (simple and nonzero) zeros of E(Z) provided
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that

) \2 '
E R
<§> < o v . ‘(3a38)

for any R >’0 (Conway (1978) p. 170).
If we represent the zeros of E 4in the upper half plane by

ag and those in the lower half plane by ah we can rewrite

equation (3.37) as

[+ [+

~ K ' '
_ _ o 0ealE(D1] 4, J\ Va J\ 2/a]
E(Z) = E(o) e h 1 - -Tr-e e 1 - /e
4 an
n=1 n=1
_ (3.39)
We can then define functions E+ and E_ such that ‘
. (1) -
E(Z) = = ‘ (3.40)
E (2) ‘ ,
where
= L
Z/a .
B () = o®H) ‘ ‘ <1 - %)e o (3.41)
and
e¢(z) e'Z[]Og[E(Z)]]Z=O “
£ (2) = = T (3.42)
. 7 Z/a,
E(o) [ " 1 - o)
n=1 an

In equations (3.41) and (3.42) E+(Z) is analytic and nonzero in the
upper half plane and E_(Z) is analytic and nonzero in the Tower half
plane. d(Z) 1s an entire function chosen so that E+ is algebraic

at infinity (Noble (1985) p. 15).
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To arrive at the des1red.facfor1zation for our Kernel function we

first write x{k) in dimensionless form and group terms as

3 L ~ 1 (%) . .
x(X) = ] —| - <]—~— * I—i(x)> [2 - %(1 - b)1°
[ - x(1 - b)] 11(x) X '

I.(X) 2 20 1.(X) ol
b x_(1 5 x7) 1 2632 - (1 - b)] PY (3.43)
X X a
or
~ Fb (;) pU
x(x) = ~] ] — ao (3.48)
[2 - x(1 - b)] Fy(x) ‘
where
- (u® A “20 =2, 1(X)
Fa (0 < = Ii(x)> [@ - %1 - py)? » X=X 1
X : B X
. - I,(X) .
- 2bx[e - x(1 - b)] — (3.45)
| | -
and
- 11(§) _
Falx) = === (3.46)
S

In equations (3.43) to (3.46) we have defined dimensionless
quantities as @ = wa/Uo, ; = ka and Bz = ang/Y where @ s
the Strouhal number énd 132 is the webef number and we have used equa-
tion (3.21) for U(r). Since the imaginary part of « (and hence of Q)
s positive the term 1/[Q - x(1 ; b)] 1is analytic in the lower haff

plane. The entire functions F, and F

] 5 can be factored using the

Welerstrass formula.
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Consider first the function F2. Let ﬁn be the zeros of F2
(which are the zeros of I]) in the upper half plane. Since F2 is an

even function of X the zeros in the lower half plane are simply _En‘

A1l of the zeros of F2 are pure imaginary. If X = ia is pure

imaginary we can rewrite Fp as (Abramowitz and Stegun‘(1964)).

11(1_?1 J1(o)

F2(1a)'= VIS o ’ (3.47)

As o 2> =» we have

J](d) ~ -2-—<cos o - %E , , (3.48)

wo
Since the zeros of the cosine grow like n as n » « the
relation (eq. (3.38)) 1§ satisfied and equation (3.37) can be applied.
We can easily find that

] | .
FZ(Q) =3 (3.49)

and
9;[109”2(?)]] -0 | (3.50)
dx N
x=0

By equation (3.39) then we can write

©

: ~\ x(1/8 -1/8)
H (1_ )<‘|+i—>e noon | (3.51)
n Bn

<

= 1
Falx) =3

N

n=1

The function F1(;) can be handled in a similar way. Let Em.

be the zeros of F1 in the upper halif plane and Cm thbse in- the

Jower half plane. Asymptotically the zeros of F., becomes just the

]

zeros of 11. In particular they grow 1ike m as m > «. We can

evaluate the constants needed in equation (3.37) as

F (0) = @° (3.52)
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and

=% |n.
2

[109[F](§)]]_ Sb=f (3.53)
x=0

Then using equation (3.37)

- 3 ~ ~ \ X[1/¢_+1/%_]
Fi(%) = of e X0 =2) H 1SR -2)e M ™ (3u5a)
Q 45 Em
m=1
Combining equations (3.44), (3.51), and (3.54) we can rewrite
the kernel function as
o~ ==/ ~\./ =~ \ X(O/¢.+#1/5) (pV
i ex(b—2)/9‘|—“ poE Y ) <__o>
' 14 Em a
~ m=1
x(x) = = Y R (3.55)
_ _ . ” g
[Q - X(1 - b)] T<1 -f—><1 +§—>e e
. n=] Bn Bn
Now let gm = —cm and define
= ~ \ X/
<] + i—)e m
4
m ~
x, (%) = Bl e®(X) (3.56)
~ \ -x/B
B
n=1 _ n :
and
'/~ \ X/B
—{_  1 - f— e n
~ Bn : ~ o~
X (')‘(') - [@ - X(l - b)] n=]°° . e¢(X) (3.57)
- Caw X(b-2)/Q T _ ‘
(&) 2Q° e T(} X_) X/g
a S €
m=1 m
so that
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X, (X)

x(X) = (3.58)

~

x_(x)

Equations (3.56) to (3.58) then give the desired factorization.

In order to determine the function &(X) in equations (3.56) and
(3.57) we need to determine the asympt6t1c b}havior of the infinite
products in these equations. An asymptotic expansion for fhe infinite
products, with X in the upper half plane, has beén g1veh by Noble
(p. 128). We can apply this expansion directly once we know the

asymptotic form of the roots En _and. Em‘

From equation (3.48) we can find that

~ i :
Bn ~ fw(n + no) * 3 (3.59)

as n » o where ng 1is some integer.

Recall that the zeros of F approach those of F, as X » o,
The asymptotic form of gm then is formally the same as equation .
(3.59) so we can write

Cp ~ Yo(m o+ m) + 5 (3.60)

as m - o where m, is some integer. The difference between the
integers m, and o -will be equal to the number of roots in the:
lower half plane which are 1eft over after we identify the set of roots

of F] which can be put into a one-one correspondence with thé roots

of F2. The roots of these two functions were determined numerically
and it was found that each of the roots of F2 could be associated
with a root of F1 with four roots of F]‘ left over. We will denote

the number of these four roots which 1ie in the lower half plane by 2.

The numerical value of & may be a function of the particular values of

the physical parameters being considered. Now since there are & roots of
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F] in the lower half plane beyond those which can be associated with
roots of F2 we must have m0 = n0 - % in equation (3.60). Then

the correct asymptotic form for Cn is
T o~ dm(n +n) + 3T (1 - ag) | (3.61)
n - 0 4 ’

With equations (3.59) and (3.61) we can write the asymptofic

expansion for x, as (Noble, p. 128)

~ ~

X, (X) ~ eip{g‘(i;) - (’1‘—“ R ALE 4) + %) . 1og-<5— P (- an) s 1)

ir

(1 l) . o <z— v 1y 1) + X (L L 3.62
<11r 4 ,2 9 o 4 Z i Z , ( )

If we choose

&(X) = —§Z<l— - l—) (3.63)
VAU

we will have that

x,(X) ~ X (3.64)

A-numer1cé] study was made of the "“left over" zéros of F](i) over
a range of the physical parameters in order to determine the factor 1.
The results of that study are now described.
3.4.3 Numerical Results for the Roots

Of the fbur roots we are considering here two are real and two are
complex conjugates when Im @ = 0. “Causality considerations require
that we determine the position of these roots when Im @ becomes
large. The movement of the roots.of F](x) as Im@ is increased from
Zero was studied numerically for a numbef'of combinations of Strouhal

number, Weber number and mean velocity profile.
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For each mean profile thefe is a rangeléf Weber number and Strouhal
number for which the four roots mové as shown in figure 3.1. This sketch
shows the movement of the roots as Im Q@ 1is varied. The 1Mportant
thing to note about this f1gﬁre is the movement of the complex root which
1ies in the lower ﬁa1f plane when Im Q = 0. Fbr fixed profile and
Weber number there'fs.a range of Re Q (1.e{, the Strouhal number) for
which this root crosses the real axis and moves into the upper half plane
. as Ile s increased as showh in figure 3.). This crossing of-the
real axis of a compliex root is the crfterion for the existence of spa-
tially growiﬁg waves in the qausa]'ﬁo]utidn (Briggs (1964)).' The range
of Re @ for which this crossfng océurs‘then corresponds to the
Strouhal number range over whfch the flow supports instability waves.
Outside of this range the flow is stable. For a given mean profile and
Weber number the range of Strbuhé] numbef over which the flow supports
instability waves can be‘determ1ned by finding the rahge of Re (Q)
err which”th1s root crbsses thé real axis. The locus of this root as a
function of (complex) Strouha1’number was determined fqr a numbervof_
combinations of mean profile and webéf number. The results of the com-
putations are shown in figures 3.2 to 3.19.

For the pliug flow profile (b =”0) the cutoff Strouha1 number (above
which the flow is stable) was found to be equal to one 1ndependent‘of the
value of the Weber number in the range.computed. Results obtained for
other profiles (b # 0) indicate that for fixed b the range of Strouhal
number over which instability waves exist decreases'w1th increasing Weber
number (see figs. 3.9 to 3;14 and 3.15 to 3.19). Add1t1oﬁal1y, for a
given Weber numer, this Strouhal number range was found to detrease

quite rapidly with increasing b. 1In fact when the profile parameter
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was increased beyond 0.5 no roots were found which correspond to insta-
bility waves for the range of Weber number reported here.

In the course of studying the movement of these roots another situ-
ation was discovered. For the plug profile when 82 < 5 the roots move
in the way>111ustrated in figure 3.20. Notice that in this situation
two roots which appear in opposite half planes when Im Q >> 1 swap
their positions for Im @ = 0 when the Strouhal number is increased
beyond a certain value. Using the criterion of Briggs (1964) this indi-
cates that the flow is absolutely unstable for these Weber numbers. That
is, disturbances grow in time at every point in space. When the flow is
absolutely unstable it is no longer appropriate to consider spatially
growing instability waves.

For the purposes of this study, since we are interested in the gen-
eration of spatially growing Rayleigh instabilities, we will confine our
attention to the parameter ranges for which the flow is convectively
unstable. 1In this range the roots move as in figure 3.1 so that & = 2.

With the position of the roots of F] thus determined the factor-
ization of the kernal function is complete. It remains only to factor
the inhomogeneous terms. This is particularly simple in this case.

From equation (3.36) we can see that the inhomogeneous terms (those
on the right) are by inspection "plus" functions. We can now proceed to
solve the Wiener-Hopf equation (eq. (3.36)).

3.5 Solution of the Wiener-Hopf Equation
"Finding the solution”" in problems of this type consists of finding

expressions for both v_ and 5+. This 1s accomplished by using
analytic continuation arguments along with Liouville's theorem on entire

functions.
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We begin by rewr1ting equation (3.36) as

U (k,a)(k - 1e)? KAk - 1e*)25*(k,a) 1k2P6 K2(k - 1e%)P

x_(K) - X, (K) Yo (k) T T 2wx,(K)

CkP(k - 1en)%2i(0)

Zex, (K) (3.65)

and recalling that this equation holds along the real k axis.

The term on the left is analytic in the lower half plane while the
one on the right 1s analytic in the upper half plane. Since the two are
equal along the real axis we can consider the former to be the analytic
continuation of the latter into the lower half plane. In this way we
can construct an entire function E(k) as
Vkay(k - 1en? -k - 1607 (k2 Koey

elk) - X_(K) - X, (K) * 2o, (K)

2
Kk - P vk - 1e%)%2(0)
2wx, (k) - 2wx, (k)

(3.66)

where E(k) 1is equa] to the "minus" functions for all k in the lower
half plane and the "plus" functions for all k 1in the upper half p]ane.
Different choices for E(k) will lead.to different solutions to the
problem. The least singular solution will correspond to the most rapid
decay of the Fourier amplitudes (and hence of E(k)) as k = «. In
order for the Fourier transform to exist the Fourier amplitudes must be
algebraic at infinity so that _E(k) s at most algebraic at infinity.
Using this fact and an extended version of the usual Liouville theorem
(Noble (p. 6)) we can determine thaf E(k) mqu be a polynomial and we

write

N
=~
+
+
a2
»~
L

4+

=]

E(k) = (3.67)
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where q 1is a finite integer. Combining equations (3.66) and (3.67) we

have

N x_(k) -~ o ~ 2 3 ~ :
U (k,a) = ———— [a + Bk + CkS + dk° + . . .+ gkd (3.68)
(k - ie*)

for Imk <0 and

1 i
P! P, o x(K)
+ oy ¥

P (k,a) =

+ 2n(k - 1e¥)2  2m(K - 1e*) K2(k-1e*)?

4.[5' + bk + Ekz + akB oo+ akq.] (3.69)
for Imk > 0. It remains to find the coefficients a, b, etc.

OQur choice for the coefficients of the polynomial E(k) will be
dictated by fhe following requ1rements} These are: (1) that the solu-
tion satisfy the boundary condition at upstream infinity (2) that ;+
is analytic in the upper half plane, and (3) that we obtain the least
singular solution. _

The upstream boundary condition is that the correction to the doubly
infinite duct solution (wh1ch is what we are constructing here) vanish
as x » -o» so that we are Teft with only the imposed forcing (which is
given by eq. (3.2)) in the compiete so]uf1on. The behavior of the pres-
sure as x 2 -o s determined by.thé behavior of B+ as k - 0 (Roos,
(1969), p. 151). 1In order for P +to vanish as x- -« the residue of
5+ at k =.0 must be zero. This is accomblished by setting 3=Db=0.

Since we have defined the function B+ to be analytic in the
upper‘half plane we must retain enogh coefficients, and choose their
values, so that the pole at k = ie* 1in equation (3.69) (which lies
in the upper half plane) will cancé] out. If we expand equation (3.69)

near k = ie* the singular part becomes
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ix, (1e%) /_ . | . P,
! t <C(1e*)2 cAend e L q(1e*)q> v 5

w
o x,(1e%)  2(1e¥)x,(1e%)
(k - ie*) (1€*)2 (1€*)4

(k - 1e9)° | (1e%)

. (E(1e*)2 + 6(16*)3 bt a(ie*)q>

1P A, (te*) ~
+ 2“0 y — 5 <2C1e* .. qq(1e*)q'1>
(te¥) '

and the double pole at k = ie* will vanish if we choose.

) '
1po .

C = 5;;:(;;;7 , =0 (3.70)

and the overall level of the pressure fluctuations as

1 ]
1Py x, (19
0= T x, (1c%)

(3.71)

the remaining contributions vanishing as e* » 0.

The least singular solution (near X = 0) will correspond to the
one whose Fourier amplitude decays most rapidly as k - «. Hence
the least singular solution will be obtained by choosing the order of
the polynomial E(k) to be as low as possible while accommodating the
consistency condition (that B+ is analytic in the upper half plane)
and the boundary conditions. Since these qoant1ons have already been
satisified we will set the remaining coefficients to zero. Then the

least singular solution becomes

2
1Po k }_(k)

¥ (k,a) (3.72)

2ux, (1e¥) (K - fex)2
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and

. P x,(k)

X, (1e¥)

P x.(1c¥) '
+ o_+ -1l (3.73)
21x+(1e*)(k - fe*) "

With the bbundafy values of the solutions thus obtained we can now
write down the equations for the flow variables. From equations (3.25),
(3.26), and (3.72) we have for the upwash velocity

o J' LK) sk

.V(X,r-) = X_(k) I](ka) e

= 2wx,(0) ~dk A. (3.74)

The streamwise velocity can then be determined from the continuity equa-

~tion (eq. (3.16)) as

| -p! (k) 1, (kr)
u(x,r) = —2— .I. I;(ka) [ ]kr + Ii(kr{] KX g (3.75)

- 2mx, (o)

and the pressure from the momentum equation (eq. (3.14))

Py x0T Lk
p(x,r) = 5?;:?6? ET;(EET: plw = kU(r)] ot I](kr)

' pp{(r)l](kr)] Mg (3.76)

The solutions of equations (3.74) to (3.76) afe valid only when 1Im
w 1is sufficiently large. The "steady state" solutions for o réa]
are obtained by analytically continuing these solutions to the real o
axis. From the discussion of the last section we know that if we are in
the range of Strouhal number for which instability waves exist and the
flow 1s‘conyect1ve1y unstéb1e one of the p01e§ of x_, we will call

it «, moves from the upper half plane into the lower half plane as
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Ime > 0. In the analytic cont1nuatfon of our‘so1ut1ons then we must
deform the integration contour in the vk plane (which is originally the
real axis) around this pole. We can evaluate the contribution of this

pole using the residue theorem. For the upwash velocity this becomes

ip! * I, (kr)
0 1 ikx
vix,r) = 5;;:{;3- j x_(Kk) T;(EET e .dk
P 1

‘ | fax
" x,(0) T,(aa) ll: [(k- a)x_(K)] T (ar)e (3.77)

Or, making use of the factorization of the kernal function in the second

term

ip! I,(kr)
0 1 1k x
vix,r) = 5;;:(57 ‘[w x_(k) I](ka) e dk -

P x,(a)
x,(0) I,(ca)x'(a)

I, (ar) olax (3.78)

Equation (3.78) is valid for o real.

Since o 15§ 1n'the Tower half plane when ‘w is real the second
term on the‘right in equation (3.78) grows exponentially fn x. This
term represents a Rayleigh instability wave with amplitude —P;x+(a»/
I](aa)x'(a)x+(0). We can think of this instability wave as being triggered
at the trailing edge of the duct by the external forcing. The ratio of
the amplitude of the instability wave to that of the forcing is the so-
called coupling coefficient which in this case becomes.

—x+(u)
o x,(0)I;(ad)x' (o)

C (3.79)

The magnitude of the coup11ng'coeff1c1ent is a measure of the effective-

ness of the external disturbance in generating instability waves.
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Using the factorization obtained earlier we can compute numerical
values for the coupling coefficient over a range of the physical para-
meters. We do this in the next section.

~ Before proceeding to the numerical calculation of the coupi1ng coefg
ficient we wish to po1nt out one further.feafure of this problem.

We could have constructed a particular solution to equations (3.5)
to (3.7) and boundary cond1tjons (egs. (3.3), (3.4) and (3.8)) without
regard to éausa11ty. -This solution would be formally the same as the one
constructed here up to equation'(3.76). The definitions of the split
functions x, and x_, however, would be different. 1In this case the
correct half plané for the real roots 1s'determ1n¢d by allowing o to have
a small positive 1méginary part. This smaTl 1hag1nary parf Q111 leave the
pole k = a 1in the 1ower'ha1f_p1ane. Hence i1t will not appear as a pole
of x_(k). We can obtain this particular solution from the causal solu-

tion (with Im o Tlarge) by replacing x+(k) by (k - a)x+(k). Making this

replacement in equation (3.72) (with ¢* = o) gives
- ‘ —1Po '
V' (k,a) = Zex (0)a (k - a) x_ (k) (3.80)

for the upwash velocity.

From equation (3.33) and (3.64) we can determine that x ~ k3 and

X o~ k2 as k -» for b+ 1. Then by equation (3.34) we must have that

+

X_ ~ k_] (for b #1). The behavior of vp near x = 0 is determined

by the behavior of V? as k - = (Roos (1969) p. 151). Inserting

the asymptotic behavior of x_ into equation (3.80) we f1nd'that
WPik,a) ~ k° as k > o

from which it follows (Lighti11) that

vWP(x,a) ~ &(x) as x-» 0"
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where &(x) 1s the Dirac delta function. Hence VP has a delta-

function 1ike singularity at the trailing edge of the duct. 1In the next
chapter we will construcg an efgensolution to equations (2.11) to (2.16)
which has the same singularity at the edge as vP. It will be shown
that the difference between the causal solution and the singular partic-
qlar solution is a constant multiple of this singular eigensolution and
that the constant is just eqLa] to that required to cancel the edge
singularity in the particular so1utjon and hence satisfy the Kutta con-
dition. These aspects will be discussed in more detail in the next
chapter. |
3.6 The Coupling Coefficient

" For the numerical computations we will return to dimensionless
variables. We make the coupling coefficient dimensionless as
U, . -x,(a) <on>

Cx (0 @x (@

C = (3.81)

a 0

where X, is given by its infinﬁte produft representation (eq. (3.56)),
x 1s given by equation (3.43) and ' now means d/dx.

We can rewr1te the infinite products in equation (3.56) in a form
more convén1ent for computations by using some results given by Noble
(p. 128). Following Noble we compare the asymptotic behavior of the

infinite products in eqUaf1on (3.56) with that of

' ~ r{— +1
~ -x/a.n ~
IX) = 1e —X—\e VX3 ! (3.82)
: a,n +b ~ b
o 1 (5_ 1 >
+ 1
: a, a

-+

n=1

where a] and b] are the coefficients in the asymptotic form of

the roots, and ¢ 1s Euler's constant (c = 0.5772 . . .).
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If we divide the infinite products in equation (3.56) by the infin-

ite product representation of J and insert the values for a] and

b] we can write

O é%% (1/4m-1/Z ) S s %1 (- )
N =€ .
J i Z,

(X)

T -t - T - any
AN S vesr - (3.83)
an + 2 (1 - 42) + X

and

e

~

Bn

ﬁn—1nn—1%
. 1 + v~ (3.84)
, frn + T + X

where the superscripts N and D are used to dist1nguish'between the

}2(;) X #E% (1/1«n_1/ﬂn)-[—[- fen + %1

[}
—

n=1

infinite products in the numerator. and denominator;'respective]y.

From the gamma function representation of J we have

» . . 5

R SR

MNE) = e/  (3.85)
F<l— + % - %) |

i

e T (3)
JD(;) . e—CX/1ﬂ 4

X .5
F(hr ¥ 4)

From the functional equation for the gamma function
2 2 ] 2
r(2) - (2 - ) (5 ) r(2 - 0) (3.87)
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and

x_,5)_(x .5 X ,5
r<1ﬂ * 4> - <1ﬂ Yy {> T <1« Y- i) F<

iw

3o

(3.88)

Combining equations (3.56) (3.63) and (3.82) to (3.88) we can write a

new expression of X, as

1n1r+1—“(1—49.) |
1) e

X, 5 X, 5
%) - D=l n ir "1 "(1«*4"')
+ B © _5_ _5_
H inr + 3 <4“) '(4"')
B
n=1 n

- tm - 1—"— (1 - 49)
1 +
jrn + %1 (1 - 82) + X

n=1

The roots Zn

N B - dwn -
_1_ 5, 1
: iwn + ZEF+

PR -:-l;»

(3.89)

and En approach their asymptotic values fairly

quickly. Expressing the terms in the infinite products so that they

occur as differences between the roots and their asymptotic va]ués

reduces the number of arithmetic operations needed before the products

can be considered converged. Not only is the computation time reduced

by this procedure but the error due to roundoff which would accumulate

after many operations is minimized.

We can use equations (3.44) to (3.46) to write x'(;) as

x'(a) [Q - ;:] 3 F.;(Z)[
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by noting that F](Z) = 0.

1.

From equation (3.56) we see that x+(o)
Combining equations (3.81), (3.89), and (3.90) along with the fact
that & = 2 to write the final computational formula for the coupling

coefficient as

+

T | ine - Zix
- " " g,
C=1_6[sz—au-b)]<a_ 1)(2_ 3>.n1

3 Fi(;); o v 4\ iw 4 ® Fing + %1]
B
n=1 n
Cn - fun + 1%1
1 Tim ~
imn - 7 te
0=l L — (3.91)
= iw
Bn - iwn - e
1+ in ~
fwn + 7 + a
n=1 |

We now give the resu]ts of the numerical eva]uaf1on of the coupling
coefficient using equation (3.91).
3.7 Numerical Results - |

Numerical va]ﬁe§ for the magnitude of fhe coupling coefficient were
computed for the mean velocity profiles cons%deredl1n section 3.4.3 and
a number of Weber numbers over the range of Strouhal numbers for which
spatially growing waves Were found to exist (see Sect1oh 3.4.3).

Figures 3.21 to 3.23 show thé results of the computations. Each
curve in these plots show the variation of the magnitude of the coupling

coefficient with Strouhal number for a fixed Weber number.
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For the plug profile (fig. 3.21) |C| is,near1y independent of
82 over the range shown while for the.other mean profiles (figs. 3.21
and 3.23) |C| 1increases with increasing Weber number.

According to these results, for a given profile and Weber number,
the greatest coupling generally occurs for smaller Strouhal numbers
although there are curves (b = 0.4, BZ = 10 most notably) for which
[C] reaches a minimum and then begins to increase as the cutoff
Strouhal number is approached. By superposing these figures we can
determine the effect 6f the mean velocity profile on |C]. When this
js done it can be seen that, for fixed Strouhal and Weber numbers, the
magnitude of the coupling coefficient increases with 1ncfea51ng b. This
result indicates that a greater coupling could be achieved in pract1ce’
if a longer nozzle were used since fhen the meahkprof11ebwou1d be more
fully developed. Along with this 1ncrease of the coupling coefficient
however comes a decrease in the growth rate of the 1n$tab111ty wave (see

section 3.4.3).
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CHAPTER 4
THE EIGENSOLUTION
4.1 Introduction

In the previous chapter, in addition to obtaining a causal solution,
we obtained a noncausal, singular particular solution to the boundafy
value problem in section 3.6.» We will show that the singularity 1h this
particular solution can be removed by adding the cdrrect multiple of an
eigensolution which has the same order of singularity. The re§u1t1ng non-
~singular solution is said to satisfy the Kutta cond1t16n. It remains to
be determined however whether or not the solution obtained using the Kutta
condition is causal. |

We will construct the necessary eigensolution in this chapter. Once
this has been done the eigenso]dtion will be combined with the particular
solution (eq. (3.80)) in such a way as to eliminate the singularity. The
nonsingular solution thus obtained will then be compared with the causal
solution obtained in Chapter 3. As in the previous chapter we construct
the eigensolution by superposition.

First we consider the flow of a doubly infinite jet of fluid in the
absence of any duct. That is, we find a solution to equations (2.11) to
(2.13) subject to free surface boundary conditions for all x, -« < x <
o, Since this solution (which is a Rayleigh 1nstab111ty wave) will not
satisfy the boundary condition on the solid duct wall, a solution is con-
structed which cancels the normal velocity on the boundary for x < 0.
The sum of these two solutions then is the desired e1gensd1ut1on.

4.2 Doubly Infinite Jet

In this section we seek solutions to equations (2.11) to (2.13) sub-

ject to the free surface boundary conditions (eqs. (2.15) and (2.16)) for

all x, —=» < X < o, We look for solutions of the form
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I e1a(x-ct)

ohely = @wlony,vhon,elorn.eh

where o€ = 0w With a and ¢ complex. Substituting equation (4.7)

(uI,v (4.1)

into the equations of motion we obtain the following equations for the

““U functions
PAU(r) - ¢) Gl(ry + pol(r) WU Ty (4.2)
pla(U(r) - c) 9?(r) -t (4.3)
and |
tai’(r) + T4 (rifin1 -0 (4.8)

These equations are formally identical to equations (3.14) to
(3.16) of Chapter 3 (in this case the functions are the normal mode

solutions whereas before théy were Fourier transforms). They can be

manipulated in the same way_to‘dbta1n the Rayleigh equation for vl as

(U(r) - )ol"(ry + QUKL= ) GT*

r

Substituting the family of velocity profiles we are considering

» r_
U(r) = U, {1 -b = | _ (4.6)
a
we can again arrive at the modified Bessel equation for "
Wy s 1 vy - <a2 v l§> Wry = 0. (4.7)

After applying a boundedness cond1t1qn on the solution at r = 0 we.

obtain
iry = AL (ar) (4.8)

where A 1s an arbitrary constant.
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The boundary conditions (eqs. (2.15) and (2.16)) determine the
values of a for which nontrivial solutions exist, that is the

eigenvalues. Using equation (4.1) in equations (2.15) and (2.16) we

obtain
~1 -1
vi(a) = e ¢ (a)(U(a) - c) (4.9)
and
pl(a) = v tl(a) (a2 - 55 (4.10)
a
Eliminating EI(a) from these two equations we can write
hay sl 411
fa(U(a) - ¢) ~ <\2 l_> :
. Yix - 2
a

Another relation between vQI(a) and ﬁI(a) can be obtained by elim-
inating ﬁI between equations (4.2) and (4.4) and evaluating at r = a.

Upon substituting for the mean flow profile (eq. (4.6)) this relation

becomes

) A 20b U (1-b)-c -
pl(a) =:§—‘[v1(a)< o, 0 >+‘(u0(1 - b) - ¢y V! (a)]

a a

' (4.12)
We can now combine equations (4.11) and (4.12) along with the

solution (eq. (4.8)) to obtain the eigenvalue relation

11(aa) _ pa3 ]
[w - U0(1 - b)a] Y ua(a2a2 - )
® - Uo(b + Na
X oa I](aa) + [w - Uo(1 - b)e] Ii(aaﬂ (4.13)
For the case b = 0 this reducés to
I.(axd) 3 w-Ua
1 pa 1 0
= I.(ead) + (0 - U a) I)(«d) (4.14)
[w - an] Y aa(u2a2 - 1) [ ad 1 | 0 1 J

which agrees with the result obtained by Keller et al. (1973).
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Equations (4.8) and (4.13) give the eigenfunctions and eigenvalues
of the normal mode solution for the doubly infinite jet. We will now
construct a solution which corrects the normal mode solution for the
presence of the semi-infinite duct.

4.3 Semi-infinite Jet

The so1ht10n constructed in section 4.2 has-a nonzero normal veloc-
ity on the boundary for x < 0. To correct for the existence of the
rigid duct walls we must superpose on this solution one which cancels the

normal velocity on the boundary for x < 0.

Specﬁfica]]y, we seek functions u, v, p and ¢ which satisfy
equations (2.11) to (2.13), boundary conditions (eqs. (2.15) and (2.16))
for x > 0 and the following boundary conditions for x <0

i (ax-ot)

V(x,a,t) = -AL (ea) e (4.18)

The boundary cond1t19n eq. (4.18) ensures that the normal velocity
at r =a 1is equal and opposite to that in the solution of section 4.2.
| Applying the un11atera1.Four1er transform (eq. (3.11)).to‘the boundary .
condition (eq. (4.18)) we get |

. 1AL (0d)
U (k,a) = 50— (4.19)

~ 2w(a - k)
As in Chapter 3 we will assume time harmonic solutions which can be
Fourier transformed in x and use the Wiener-Hopf technique.
The same manipulations leading to the Wiener-Hopf equation in Chap-
ter 3 can be performed here as well. The only difference being in the
inhomogeneous terms in the Weiner-Hopf equation (due to the different

boundary conditions for the two problems). Without repeating the aigebra

here we simply write down the Wiener-Hopf equation for this problem as
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. 22 L2
x(k) V_(k,a) + 1k2§+ - _ [x(k) +‘_ljrk (k= ~1/a )] .

[0 - kU(a)]
1AL (a2) 2 1
Ve iyk"Z (0)
2r(a - K) ~ 2x (4.20)

In constructing the (singular) eigensolution, as in the particular
solution, the frequency « 1s allowed to have a small positive imaginary
part. The factorization of . x(k) when Im w 1s small is related to

the factorization when Im e is large by

X (K) = %, (K) (K - o) - (4.21)

where x, are the split functions obtained in Chapter 3 with Im w >> 1.

Using the functions ';+ here we:can‘rewrite equation (4.19) as

" B 2 N : B
V_(k,a) ) 1k P (k,a) . [ 1 w2k - 1/a%) ]'
(k) X, (k) x (k) x, (K)o - ku(a)1] -
Whisd) i@y g
Brle =1 ek, (k)

The last term on the right hand side ofhequat1on (4.22) 1is a]ready
a "p]us" function. The rema1h1ng 1nhomogeneous terms must be factored
by subtract1ng:out poles. For'th1s purpose we def1ne

» 1AL (od) - 2,2 2
6(k) = —0 [~ L y k(K - 1/2) ] (4.23)
e - 0 X (e - kU(@) 1 - K)

and construct functions G+ and G_ so that
G(k) = (G, (k) + G_(k)) | (4.24)

where G _ s analytic in the upper half k plane and G 1is analytic
in the lower half plane. By 1nspect1ng'éqﬁat10n (4.23) we can see that

the desired functions are
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_1AI](aa) 1AI1(aa) Yk2(k2 _ 1/a2)

6, (k) = — - — +
2n(a - KX (@) (o - K)[o - kU(a)IX,(K)2n
2 2
© 2
, Y(Uta)) ((U(a)) - 1/a >1AI1(aa) (4.25)
(& - wtay) Rlotay)te - Kutaen
1AL (a2) 1AI (ad) o o
G__(k) = — + ~ -
2u(a - k)x_(k) 2(a - K)x_(a)
. 2 - 2 .
' _ [x) 2
_ lgtas) ((U(a)’> - 1/ )”‘11("‘3) (4.26)
(a . UTa)) x+<U?a)>[w - KkU(a) ]2
Substituting equations'(4.25) and (4.26) into equation (4.24) and
rearranging we get |
V_(k,a) 1AL, (a2) 1AL, (wa)
~ + ~ X - ~ +
x_(k) 2n(a - K)x_(k) 2v(c - K)x_(a)
< © )2<< © )2 1/a2>iA1 (ad) -1K%P (k,a) 11 (aa)
, — A0/ \iga)) ~ i R A e T
(& - geay)%e(gtay) o - k@) X0 2w(a - KX (e)
| (e ’2< o V2 2)
) Yk2(k2 ~ 1/a2) 1A11(aa) . Y(U(a)) (U(a)) - 1/a 1AI1(aa)
(a - K)o - kU(a) IR, (k)2 (a’- U%EY) %, (G%Ej)[m ~ KU(a)]2w
. 2 ! :
JAxk g (0) | gy (4.27)
2mx, (k)

where E(k) 1s an entire function which, by the same arguments used in
Chapter 3, is a polynomial.

Replacing E(k) with a polynomial and returning to the split
functions X, by equation (4.21) we can write the solution to the

Wiener-Hopf equation as
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U (k.,a) = (K - o)x (k) [3' sBk+ ...+ gk

2 ) |
) - 1/a ) (k - a)x_(K)

2
) 1AL, (aa)x' (a)x_(K) 1AI1(“a)Y(U(a)> ( ?

21x (o) ¥ a% [0 - kU(a)]
11')(+ [+ W - a
% (o) - oty) o
(4.28)
and
. ik - a)x, (k) [, » AL (a2)x (a)x,(K)
b, (k,a) = 5 e [a sBk+ ...+ kq] i LB x;
k - 2wx  (a)k
2,.2 , 2 < 2(( 2 é)
AI1(aa)yk (k™ - 1/7a%) Al (aa)Y aQ U(a)) - 1/a") (k - a)x+(k)
L _
21k (e - k)[o - kU(a)] (U(a)>( U(a)> 2elo - ku(a) K2
oy (D) (4.29)
' 2

As in Chapter 3 we wi1l choose the coefficients Qa', 3', etc. so
that (1) B+ is analytic in the upper half plane, (2) there are no
poles at k = 0, and (3) we obtain the least singular solution near
x = 0.

~

The singular part of P+ near k =_Q‘can_be found to be

‘ . AL (ad)x (a)x.(0) . ACax,(0) | -
1 ~ 1 + + + 1.1 ~
oz [‘ tox, (D - =@ BT ]* K [‘ fax, (0B +

AI1(aa)x'(&)x;(0)
2wy, ()

+ 13 (- ax,(0) + x+(0)> -

, ig;Q»(—axi(O) + x+(0))- dx;(O)U(a)J (4.30)
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In order to eliminate the pole at k = 0 we must set

N (AL (ad)x () |
PR ! v Ao (4.31)
o | 21rx+(a.) o
and
b oo ha - %9 . Agﬁgiﬁl] | (4.32)
a ® 3 2
... w
where _
.2 2
2
11, (ad)y ( L ) <( @ - 1/a )
- Ua)/ “(a)> 5 | (4.33)

2en, (atr) ¢ - o)

This choice for a and ensures that the pressure decays

at upstream infinity and that

b
B+ is analytic in the upper half plane.

With these conditions satisfied then we can obtain the Teast singular

.solution by setting the remaining coefficients equal to zero. Hence, we

can rewrite equations (4.28) and (4.29) as

1AL, (a2) 1AI1(aa)xl(d)x_(k)

V_(k’a) = (k - a)X_(k)(a + bk) - 21((0. _ k) - 21fx+(0.) |
AC(k - a)x_(k)
R RRTETS (4.38)
and
Bk - @)%, (K) /. o AL (ad)x (@)x,(K)
P,(k,a) = s (3 + B k) - t

K 2ﬂx+(a)k2

2,2 2 :
Al.(ca)yk (kS - 1/a%)  +1AC(k - a)x.(K) '
1Y . b 1%;191 (4.35)

C2nk%(a - K)o - KU(a)] [ - kU(a)]K?
The purpose of constructing an eigensolution to the problem was to

use it to eliminate the edge singu]ér1ty in the noncausal particular
solution (eq. (3.80)). However by examining equations (3.80) and (4.34)

we see that the least singular eigensolution we were able to construct
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(consistent with the boundary”cond1t1ons at upstream infinity) has a
higher order singularity than thé'particu1af solution equation (3.80).
If we try to remove the singularity in the particular solution by adding
this eignsolution we will still be left with a singularity at the edge
of the duct and hence the resulting solution will sti11 not satisfy the

“Kutta condition (in fact it w111 not even exist in the usual sense).

Evidently another eignsolution must be added to relieve this singularity.

4.4 The Kutta Condition N

The difference between the causal and noncahsa]’particu1ar solution
must satiéy the differential quations'(2.11) to (2.13) subjet to homo-
“geneous boundary cond1t19ns,‘that is 4t must be én eigensolution. From
equations (3.17), (3.78); and (3.80) we can find this eigenso]ut1on for

the upwaéh velocity to be

1P x_(k) +P x, (o)
Ve(x,a) = f 2= l:] + k ; °:| eikxdk - 0+ 11(aa)e1°‘

27x,(0)

P>

X, (0)1;(ca)x (a)

(4.36)

If we rearrange equation (4.34) we can write it as

SAAT (0d)x'(a) - 1AT (a)
. 1 AC AC ]
v (k,a) = {(k - a)x (K) - s )
- - 2max (a) w © 2v(a - k)
+
1AL (a2)x" (o) x_(K) | s <7 ACK - a)x (K)
_ 2“X+(a) + (k ~ a)x_(k) ‘[— ot b k].+ [Q TE

(4.37)

' Comb1n1hg equations (4.8), (4.19), and (4.37), we can write the complete

eigensolution we have constructed as
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® 1AL (aa)x ' () -
vE(x,a) - J ;ﬂx+(a) x_(k)<§5—;—"‘l + 1> e™®¥dk + AL (aa) '

OO

o AC(k - a)x_(k)
. J: {(k - a)x_(K) [— AC . 8 k] R (1673 }eﬂ(xdk (4.38)

The first two terms on the right in equatipn (4.38) are equal, to

within a multiplicative constant, to the eigensolution (4.36). The
remaining term then must by ifse]f be an'e1genso1ut10n with the same
level of singularity as the eigensolution we constructed in the last
section.

We write this eigensolution as

vE(x,a) = L (k - &) x_(K) - [%c_ ¢ Bk o+ tw—%—)—]—]ewxdk . (4.39)

If we added the eigensolution (4.38) and subtractéd (4.39) from the
noncausal particular solution we could eliminate all the singularities
by choosing the constant A correctly and we would of course arrive back
at the causal solution.

Naturally we cannot conclude from the discussion 6f this séction
that all solutions which satisfy the edge condition are causal. However,
with the procedure used here, we were not able to consfruct any honcausa]
solutions which satisfied the edge condition.

4.5 The Effect of the Mean Flow Profile on the roots of the Dispersion
Equation

Before closing this chapter we explore the effect of the mean flow
profile on the roots of the dispersion equation (eq. (4.13)). The inclu-
sion of the parameter b allows us to trace the evolution of these roots
as the mean profile goes from plug flow (b = 0) to a Hagen-Poiseville

parabolic profile (b = 1).
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For the numerical computations we write equation (4.13) in dimen-

sionless form as

X1 (X) L | ~2 ~2
|- 2%[e - %1 - b)Ib + 5—“5—"1 -0 (4.40)

1](2) B

(e - %1 - b)12Nh +

Roots corresponding to the lowest instability modes were computed
over a range of Strouhal and Weber numbers. Figures 4.1 to 4.5 show the
develaopment of these roots as b goes from 0 to 1. In these figures

Im x corresponds to the growth rate of a disturbance with wavenumber

Re x.
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CHAPTER 5
DISCUSSION AND SUMMARY

We have examined the possibility of exciting capi]]ary instabilities
in a circular liquid jet by forcing the flow frpm within the nozzle.
This is the so-called receptivity problem. A fjme hérmonic axial pfes-
sure gradient was imposed oh the steady, parallel flow of a jet emanating
from a semi-infinite circular duct.

Using a method developed 1in the study of plasma instabilities we
were able to construct a time harmonic causa1 solution to the forced
probiem over certain ranges of the physical parametérs.. In order for
this time harmonic solution to be causal it must contain a term which
grows exponentially in the downstream direction, in other words an jnsta-
bi1ity wave. Hence causality provides a mechanism by which externally
1mbosed disturbances can couple to instability waves. 1In addition,
causality uniquely specifiefs the amplitude of the instability wave
relative to that of the forcing and hence the "coupling coefficient" is
determined. This "coupling coefficient" is a measure of the effective-
ness of the disturbance in generating instability waves. The analysis
of Chapter 3 yielded a formula for the coupling coefficient from which
numerical values were computed for different combinations of mean pro-
file, Weber number, and Strouha]bnumber.

In the process of constructing a causal solution we found a range
of Weber numbers (in particular Weber numbers less than around 5) for
which a time harmonic "steady-state" solution does not exist. For these
Weber numbers a disturbance will grow exponentially in time at every
point in space so that the concept of spatially growing waves is no
1;nger app11cab1e. In this case the flow is said to be abéo]ute]y
unstable. Since we are interested in generating spatially growing waves
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we have restricted our attention to the range of Weber number for which
a "steady-state" solution exists and‘have not further pursued the case
of absolute instability. _

In addition to the casual solution obtained by the method described
in the appendix a noncausal solution to the forced problem was found.
The noncausal sd]ut1on had a de}ta function singularity at the trailing

’edge of the duct. 1In order to obtain a solution which satisfies the
Kutta condition a constant multiple 6f an eigensolution, with the same
level edge singularity can be*added‘to the forced solution sd that the
singularity is cancél]éd out. L

uIn'Chapter 4 we constructed an e1genso1ﬁt10n to the equations and
boundary conditions setldown in Chapter 2. However, the least singular
eigensolution we were able to construct contained a higher order edge
singularity than the noncausal particular soTution. Hence the sum of the
two sti11 would not satisfy the Kutta condition. We were able to elimin-
ate all the singularities by appealing back to the solutions of Chap-
ter 3 but this 1nev1tab]y led us back to the causal solution in order
satisfy the edge cond1t16n. That 1s to say we were not able to construct
any noncausal solution which sétisfied the edge conditions.

In constrhct1ng the eigensolution in Chapter 4»we derived the dis-
persion relation for thé_sfab111ty problem of the doubly 1nf1n1te_jet for
the family of mean profiles given by egq. (3.25). The Towest order root
in the fourth quadrant of the complex ane_number‘p1ane Qas compu%ed for
this family of prof11és over a rahge of Weber and Strouhal numbers
extending the results of Keller et al. (1973) who Eomputed this root for
the plug flow prof1]e»(b =0). |
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5.2 Prospects for Further Research

The discovery that the 1iquid jet can support abso]ute'1nstab111t1es
was an unexpected resu1t which deserves more attention. By a detailed
numerical investigation of the disper51on relation {t wou]d be possible
to pin down, for each mean profile, the range of Weber number for which
the absolute instabilities arise. It mayveven be'possib1e to determine
this range analytically for the plug fliow profile.

The effects of v1scos1ty on the coupling coefficﬁent and growth
rates of the instability waves have not béen considered in this work and

would make an interesting extension of the results obtained here.
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APPENDIX A
A.1 Introduction

In this appendix we w111 outline some of the theory behind the cri-
teria used in the main body of this work to ensure that céusa]ity 1s»
satisfied and identify absolute instabilities. The matﬂemat1cs was
worked out originally for the study of plasma instabilities. We have

.used the results as derived by Briggs (1964) and BerS'(1972) and refer-
ence will be made to them for detailed proofs.

The méthod fof obtaining a causal solution is bésed on the examina-
tion of an initial value problem where the forcing is "turned on" at some
initial time. The "steady state" solution will be the long time behavior
of the solution to this initial vé]ue prob]em'prov1ded that the flow is
not absolutely uhstab]e. '

A destript1on of the method and a discussion of the issue of abso-
lute instability is given in the following fwo sections. ‘S1hce we have
a specific exampie in the present problem we wﬁ11 use it to 1llustrate
the ideas.

A.2 Method of Solution

We consider an 1n1t1a1_vé]ue problem. At time t = 0 the flow in
the semi-infinite jet is subjected tp a pulsating axial pressuré gradi-
ent. The response of the flow to this forcing in space and time can be
determined by an inverse tranSform of the Greens function for this prob-

lem in the frequency and wave number p]anes'as
g(x,t) =J j 6(w,k) e &' g do | (A1)
L - F ’ -

or as a function of frequency as

9(x,0) = sG(w,k) e 1kx

F

dk - (A2)
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This Greens' function will have po]es.at the zeros of the dispersion
relation in the k and w p1anes{ ‘The inversion contour in the fre-
quency plane must be a 1ine such that no zeros of the dispersion relation
(complex « for real k) exist ébove Ht, since only then will the con-
dition of causality be satisfied (for t < 0 the integral is evaluated
by closing the contour in the upper half « plane). The integration con-
tours in the k and o planes are shown in figure A.1. Therefore: we
need to obtain the solution in the frequency p1ane é]ongvthis contour L,
that is for the frequency hav1ng é sufficiently large positive imaginary
part. |

We are interested in the asymptotic response of-fhe flow a long time
after the forcing was initiated. The asymptotic responsevCan be obtained
by moving the contour in the o plane as c]qse as possible to the real
axis (since, in the absence of absolute instabilities the behavior of the
solution for large t 1is determined by the po]e:of' g nearest the real
axis in the o plane). If we can mdve the cpntour a11vthe way to the
real axis, that is if we can analytically coﬁt1nue g‘ to the real axis,
then the Tong time response will be due to a pqle on the real axis whﬁch.
corresponds to the frequency of the forcing. In this case then a time
harmonic, "steady staté" so]utﬁon‘ex1sts.

Now the poles in the k 'plane are‘re]afed to Q through the dis-
persion relation, say A(k,w) = 0. As we 1ét »m ‘approach the real
» axis it may happeh that certain poles in the k plane cross the
real k axis (in fact, if instability waves are to be-generatéd by the
forcing this must happen). If this happened g(X,w) wou]d not be ana-
lytic unless the contour in the k plane is deformed so as to continue
to include (or exc1ude).any poles which might be inclined to cross the
real axis as Imw » 0. This is illustrated in f1gﬁre A.2.
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The spatial response of the f1pw is 6bta1ned by closing the integra-
tion contour in the upper (Tower) half k plane for x > (<) b. Any
poles which crossed into the lower (upper) half plane as Imw ~» 0 (and
wh16h remain inside the contour due to the(deformation) correspond to
- growing instability waves in the "steady-state" response (see eq. (A.2)).

In short then, to'obta1n a causal solution, we need to obtain the
transform of the solution to the initial value probliem with the frequency
having a large positive 1ma§1nary bart. Th1s solution will appear form-
ally the same as 1f we were seeking a_t1me harmonic solution from the
start. Hence we can proceedvfrom the‘time harmon1cAform while keeping
in mind that the frequehty hés a large bositive imaginary part. We then
let Imw > 0 and keep track of ény poles in the k plane which Cross
the real axis and in this way obtain a cadsa] solution for w real.

A.3 Absolute Instab111t1es | v

It may happen that the analytic continuation just described.cannot
be carried out all the way to the real o axis. One way this could
occur is if two roots in the k plane, one originating in the upper and
one in the lower half plane, merge for some complex w w1th’ Im w > 0.
As can be seen from figure A.3 the integration contour in the k plane
will become "pinched" between the two p§1es and the deformat1on on which
the analytic continuation rests cannot be perﬁprmed. In these situations
(as §hown by Briggs and Bers) the asymptotic time response is dominated
by a term which grows exponentially in time at every position in space
and the flow is absolutely unstable.

When these absolute instabilities are present there is no "steady-

state" and the concepts of spatial instability break down.
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Figure 3.6 - Locus of complex root of x for b =0, [52 = 40,
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Fiqure 3.10 - Locus of complex root of ¥ forh=10,2, Bz =25,
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Figure 3.11 - Locus of complex root of x for b = 0,2, B2 = 30,
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Figure 3.13 - Locus of complex root of x forb = 0.2, [32 = 40,
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Figure 3.19 - Locus of complex root of x forb = 0.4, [32 =12,
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Figure 3.20 - Movement of roots of x in the case of absolute
instability.
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